Feeds:
Δημοσιεύσεις
Σχόλια

Archive for Ιουλίου 2016

  • Μαθηματική Τέχνη…
    Κάτω από (Μαθηματικά) από sine στις 23-11-2008 και με ετικέτα Μαθηματικά & Τέχνη
    Τα μαθηματικά και η τέχνη γενικότερα μολονότι, φαινομενικά τουλάχιστον, αποτελούν δυο ξεχωριστά – διακριτά πεδία της ανθρώπινης δραστηριότητας, εντούτοις είναι δυνατόν να συνδυαστούν και να δώσουν δημιουργίες οι οποίες αποτελούν αξιοθαύμαστο μείγμα εντυπωσιακής πολυπλοκότητας και εκπληκτικής ομορφιάς.
    brunes-parthenon.jpgΙστορικά, τα μαθηματικά, μολονότι θεωρούνται κυρίως λογική – αναλυτική επιστήμη, έχουν παίξει σημαντικό ρόλο στην εξέλιξη της τέχνης, η οποία απευθύνεται κυρίως στο συναίσθημα. Δυο αιώνες πριν οι αρχαίοι Έλληνες επεξεργαστούν τις αφηρημένες γεωμετρικές ιδέες, και θεμελιώσουν επιστημονικά τη γεωμετρία, οι Αιγύπτιοι, τους οποίους απασχολούσαν ελάχιστα τα θεωρητικά ζητήματα, χρησιμοποιούσαν τα εργαλεία τους προκειμένου να σχεδιάσουν και οικοδομήσουν τους έξοχους ναούς και τα εκπληκτικά μνημεία τους. Για τους Αιγυπτίους η γεωμετρία ήταν ένα σύνολο εμπειρικών γνώσεων κατάλληλων για τους εξερευνητές της γης, τους καλλιτέχνες, τους αρχιτέκτονες, τους μηχανικούς και τους γλύπτες. Αποτελούσε πρωτίστως ένα εργαλείο που τους προσέφερε την δυνατότητα να εκτελούν πρακτικές και καλλιτεχνικές εργασίες. Τα μαθηματικά από τότε μέχρι και σήμερα εξακολουθούν να παίζουν ένα σημαντικό ρόλο στην εξέλιξη των διαφόρων μορφών της τέχνης. Σ” όλες τις εποχές αναδείχθηκαν εξέχουσες μορφές της τέχνης, οι οποίες χρησιμοποίησαν τα μαθηματικά ως το βασικό συστατικό της τέχνης τους. Είναι προφανές ότι δεν είναι δυνατόν να υπάρξουν κανόνες ή όρια σχετικά με τα θέματα ή τις ιδέες της μαθηματικής τέχνης. Υπάρχουν όμως κάποια θέματα τα οποία έχουν χρησιμοποιηθεί περισσότερο και δείχνουν ότι έχουν κερδίσει την προτίμηση ορισμένων καλλιτεχνών. Μεταξύ αυτών είναι τα πολύεδρα, τα ψηφιδωτά, τα ανέφικτα σχήματα, οι ταινίες M?bious και τα fractals.
    Ο Ευκλείδης (300 π.χ.) στο 13ο βιβλίο των «Στοιχείων» του απέδειξε ότι υπάρχουν ακριβώς πέντε τύποι κανονικών πολυέδρων: το τετράεδρο, το οκτάεδρο, ο κύβος, το δωδεκάεδρο και το εικοσάεδρο. Ο Πλάτωνας (427-348 π.χ.) έτρεφε ένα τόσο μεγάλο θαυμασμό απέναντι σ” αυτά τα σχήματα ώστε τα χρησιμοποίησε στο κοσμολογικό του σύστημα προκειμένου να απεικονίσει τα τέσσερα βασικά στοιχεία του σύμπαντος – τη γη, τον αέρα, τη φωτιά και το νερό. Τα «Πλατωνικά στερεά», όπως είναι γνωστά τα κανονικά αυτά πολύεδρα, έχουν χρησιμοποιηθεί κατά καιρούς σε πολλά και διάφορα έργα τέχνης ως διακοσμητικά στοιχεία.
    Ο Leonardo da Vinci (1402-1519) είναι γνωστός για τα επιτεύγματά του τόσο στις επιστήμες όσο και στις καλές τέχνες. Στα έργα του χρησιμοποίησε παραστατική γεωμετρία προκειμένου να δημιουργήσει τα πρώτα παραμορφωμένα πλέγματα, τα οποία όταν ειδωθούν από κάποια συγκεκριμένη γωνία εμφανίζονται κανονικά. Ο Johanes kepler (1580-1630) επίσης πέρα από τη αστρονομία είχε μεγάλο ενδιαφέρον για τη δημιουργία γεωμετρικών ψηφιδωτών.

escher.jpg

 

 

 

 

Όταν όμως αναφερόμαστε στον όρο «μαθηματική τέχνη» ο νους μας πηγαίνει κυρίως στον Ολλανδό καλλιτέχνη Maurits Escher (1898-1972), ο οποίος δικαίως θεωρείται ο πατέρας αυτού του είδους της τέχνης. Η εργασία του αποτελεί μια αστείρευτη πηγή έμπνευσης για πολλούς σύγχρονους σημαντικούς καλλιτέχνες. Οι λιθογραφίες, οι ξυλογλυφίες και οι χαλκογραφίες του βρίσκονται κρεμασμένες στα σπίτια μαθηματικών και επιστημόνων σ” όλο τον κόσμο. Πολλά έργα του έχουν ως βάση κάποια μαθηματικά θέματα που έχουν κατά καιρούς αναλυθεί σε βιβλία ψυχαγωγικών μαθηματικών, όπως αυτά του Martin Gardner. Ο Escher είναι περισσότερο γνωστός στους κρυσταλλογράφους για την πετυχημένη ψηφιδωτή τεχνική με την οποία χωρίζει το επίπεδο. Χωρίζοντας το επίπεδο με κυματιστές σειρές πουλιών, ψαριών, ερπετών, θηλαστικών και ανθρώπων κατάφερε να δημιουργήσει μεγάλη ποικιλία καταπληκτικών όσο και απροσδόκητων εικόνων, οι οποίες βασίζονται σε νόμους της συμμετρίας, της θεωρίας συνόλων, της προοπτικής, της τοπολογίας και της κρυσταλλογραφίας.

dali.jpg    Ο Salvator Dali (1904-1989) ήταν ένας άλλος διάσημος Ισπανός σουρεαλιστής ζωγράφος ο οποίος χρησιμοποίησε στους πίνακές του σχέδια με έντονα γεωμετρικά-τοπολογικά στοιχεία. Ο Dali απεικόνισε σε πολλά έργα του τον τετραδιάστατο χώρο στο χώρο των δύο διαστάσεων. Για παράδειγμα, στο έργο «Σε αναζήτηση της τέταρτης διάστασης», υπάρχουν στοιχεία τοπολογίας και τετραδιάστατης γεωμετρίας, έτσι που ο πίνακας φαίνεται να κινείται γύρω από μια υπερσφαίρα.
Στα τέλη του 19ου αιώνα – αρχές του 20ου, μια ομάδα μαθηματικών με επικεφαλής τους Peano, Hilbert, Cesaro, Koch και Sierprinski, μεταξύ άλλων, διαμόρφωσαν μια νέα οικογένεια καμπύλων με αλλοπρόσαλλες μαθηματικές ιδιότητες, οι οποίες ξέφευγαν από κάθε άλλο προηγούμενο. Αντίθετα προς την παραδοσιακή γεωμετρία που βασιζόταν στα τρίγωνα, τα τετράγωνα, τους κύκλους, τις ελλείψεις κλπ, αυτή η νέα γεωμετρία περιγράφει περιστρεφόμενες καμπύλες, σπιράλ και ίνες οι οποίες περιτυλίσσονται μεταξύ τους έτσι ώστε να δίνουν περίπλοκα σχήματα, οι λεπτομέρειες των οποίων να χάνονται στο άπειρο.
mandelbrot_mathart.jpg   Το 1977, με τη βοήθεια ενός Computer, ο Γάλλο-Πολωνικής καταγωγής επιστήμονας Benoit Mandelbrot, κατόρθωσε να πάρει την πρώτη εικόνα αυτής της νέας γεωμετρίας, η οποία στη συνέχεια ονομάστηκε fractal γεωμετρία. Το 1980, η δημοσίευση του βιβλίου του με τίτλο «Η fractal γεωμετρία στη φύση», έκανε δημοφιλή τη γεωμετρία αυτή και είχε ως αποτέλεσμα τη δημιουργία ανάλογων εντυπωσιακών σχημάτων.
Την τελευταία δεκαετία διαφαίνεται μια τάση για παραπέρα ανάπτυξη των αποκαλούμενων μαθηματικώς δημιουργούμενων σχημάτων και εικόνων, δηλαδή σχημάτων ή εικόνων που παράγονται από Η/Υ με την κατάλληλη εφαρμογή κάποιων μαθηματικών τύπων ή αλγορίθμων. Παράδειγμα τέτοιων σχημάτων με μεγάλη αισθητική απήχηση αποτελεί το σύνολο Mandelbrot, το οποίο προέρχεται από την επαναληπτική διαδικασία επανεισαγωγής των τιμών σε μια συγκεκριμένη συνάρτηση, μιγαδικής μεταβλητής. Όταν αναπαρασταθεί στην οθόνη ενός υπολογιστή το σύνολο αυτό, δίνει την εικόνα μιας καρδιάς με οίδημα.!

Από  http://blogs.sch.gr/eylignou/archives/4056

Advertisements

Read Full Post »

  • Η καλλιτεχνική ομορφιά των Μαθηματικών! 

 

 

 

 

 

Μπορεί να μην είναι αλήθεια;

 

 

Η γοητεία που ασκούν τα μαθηματικά στον ανθρώπινο εγκέφαλο επιβεβαιώνεται μέσω μίας νέας βρετανικής επιστημονικής έρευνας σύμφωνα με την οποία όσοι θεωρούν πραγματικά όμορφες τις εξισώσεις, τις βλέπουν σαν αυθεντικά έργα τέχνης. Η νέα μελέτη ενισχύει τη θεωρία ότι υπάρχει μια ενιαία νευροβιολογική βάση για την ομορφιά και την αισθητική αντίληψη του ωραίου.

Οι ερευνητές, με επικεφαλής τον καθηγητή Σεμίρ Ζέκι του Εργαστηρίου Νευροβιολογίας Wellcome του University College του Λονδίνου, που έκαναν τη σχετική δημοσίευση στο περιοδικό «Frontiers in Human Neuroscience» (Σύνορα στην Ανθρώπινη Νευροεπιστήμη), σύμφωνα με το BBC, χρησιμοποίησαν την τεχνική της λειτουργικής μαγνητικής απεικόνισης (fMRI) για να μελετήσουν την εγκεφαλική δραστηριότητα 15 εθελοντών μαθηματικών, την ώρα που αυτοί καλούνταν να δουν 60 μαθηματικές εξισώσεις και να τις αξιολογήσουν ως όμορφες, άσχημες ή ουδέτερες.
Η μελέτη έδειξε ότι η εμπειρία του «μαθηματικά ωραίου» καταγράφεται στην ίδια συναισθηματική περιοχή του εγκεφάλου (στον μέσο κογχομετωπιαίο φλοιό), όπου αποτυπώνεται και γίνεται η επεξεργασία του «ωραίου» στην μουσική ή τη ζωγραφική.
«Σε πολλούς από εμάς οι μαθηματικές εξισώσεις φαίνονται ξερές και ακατανόητες, όμως για έναν μαθηματικό μια εξίσωση μπορεί να ενσωματώνει την πεμπτουσία της ομορφιάς. Η ομορφιά μιας εξίσωσης μπορεί να προέρχεται από την απλότητά της, τη συμμετρία της, την κομψότητά της ή την έκφραση μιας αναλλοίωτης αλήθειας. Για τον Πλάτωνα, η αφηρημένη ποιότητα των μαθηματικών εξέφραζε το αποκορύφωμα της ομορφιάς», δήλωσε ο Σεμίρ Ζέκι.
Το πείραμα έδειξε ότι οι εξισώσεις που συστηματικά γεννούν την πιο έντονη αισθητική απόλαυση, είναι η ταυτότητα του Όιλερ, το Πυθαγόρειο θεώρημα και οι εξισώσεις Κοσί-Ρίμαν.

από http://blogs.sch.gr/eylignou/archives/4056

Read Full Post »